E813

Axial Flux BLDC Motor

The E813 motor is part of a permanent-magnet motor system designed for power generation applications where high system efficiency is important. Developed for a customer for use in high-efficiency distributed-power systems, the E813 was designed to give the competitive edge necessary in this relatively new and highly competitive field.

In addition to the E813, a number of other coil configurations have been studied in the same frame size – including multislice versions and high peak-torque versions – for a variety of industrial and military applications. The family of E813 motor designs currently under development with government and commercial partners will offer a broad range of possible system configurations for both high-efficiency and high-torque speed-servo applications.

The specifications provided here illustrate some of the E813's capabilities. Especially noteworthy is its high efficiency over a very large operating range. Low-speed, high-torque versions of this motor are currently under development for direct-drive position-servos for naval applications.

Contact a Lynx applications engineer to determine if there is an 813 mm SEMA design that can meet your needs.

Typical Applications

- Power Generation
- Servo Applications
- Precision Robotics
- Marine Propulsion
- Weapons Turrets
- Compressors / Blowers

Application Information

- Requires 3-phase PWM inverter, available through Lynx partners
- Performance ratings based on 130°C winding, 40°C ambient air
- Developed for use in highefficiency PM synchronous distributed power generation units

Standard Features

- Brushless axial flux design
- Use of patented SEMA coil provides superior power density
- Ironless design eliminates cogging torque
- Extremely linear torque constant independent of speed

Lynx Motion Technology

9540 Highway 150 PO Box 250 Greenville, Indiana 47124-0250 http://www.LynxMotionTechnology.com/ Phone (812) 949-7924 • Fax (812) 949-7946

E813

Parameter	Symbol	:	SI	En	glish
Continuous Ratings					
Supply Voltage (DC bus)	V_s	850	V_{DC}	850	V_{DC}
Voltage (line to line)	V_{L-L}	574	V _{AC (pk-pk)}	574	$V_{AC\ (pk-pk)}$
Speed	S	2,750	rpm	2,750	rpm
Torque	T_{c}	450	N⋅m	332	lbf·ft
Current	1	119	A_{rms}	119	A_{rms}
Power	P_{out}	130	kW	174	hp
Peak Ratings					
Peak Torque ¹	T_{pk}	900	N⋅m	664	lbf·ft
Peak Current 1	I_{pk}	238	Α	238	Α
Motor Constants					
Torque Constant	K_T	3.78	N·m/A	2.79	lbf·ft/A
Back EMF Constant (phase to neutral)	K _E	209	V _{rms} /krpm	209	V _{rms} /krpm
Electrical Time Constant	τ_e	1.66	μs	1.66	μs
Electrical Aspects					
Resistance (cold, per phase)	R	26.5	$m\Omega$	26.5	$m\Omega$
Inductance (per phase)	L	44	μΗ	44	μΗ
Mechanical Aspects					
Inertia (rotor only)	J_r	9.16	kg·m²	6.76	lbf·ft·s²
Mass (entire motor)	m	295	kg	650	lb
Number of Poles	_	28	poles	28	poles
Motor Diameter (actual)	AC	813	mm	32	in.

¹ Peak ratings are based on operational capabilities of existing inverter. Higher peak torques are possible using a different controller. Contact a Lynx engineer for details.

Efficiency (Motor Only)

Lynx Motion Technology

9540 Highway 150 PO Box 250 Greenville, Indiana 47124-0250 http://www.LynxMotionTechnology.com/ Phone (812) 949-7924 • Fax (812) 949-7946

9540 Highway 150 PO Box 250 Greenville, Indiana 47124-0250 http://www.LynxMotionTechnology.com/ Phone (812) 949-7924 • Fax (812) 949-7946